From 1 - 3 / 3
  • <div>Geoscience Australia, together with contributors from the wider Australian seismology community, have produced a new National Seismic Hazard Assessment (NSHA23), recommended for inclusion in proposed updates to Standards Australia’s&nbsp;AS1170.4. NSHA23 builds on the model framework developed for NSHA18, and incorporates scientific advances and stakeholder feedback received since development of that model. Key changes include: further refinement and homogenisation of the earthquake catalogue; revisions to the fault source model through inclusion of newly identified faults and revised activity rates on some faults; assessment of ground motion models through quantitative comparison against observations; and inclusion of a specific ground motion model for shaking from plate-boundary earthquakes in northern Australia. Expert elicitation was used to capture epistemic uncertainty surrounding model choices. The elicitation focused on decision points that sensitivity analysis had shown were more important for hazard, where new models had been developed, and where model choices had been controversial in NSHA18. Key questions included which catalogue to use as the basis for calculating hazard, the weighting of different source model classes (background, regional, seismotectonic, smoothed seismicity and smoothed seismicity with faults), and the selection and weighting of ground motion models for different tectonic regions. NSHA23 hazard results for capital cities show minor changes compared with NSHA18, with the exception of Darwin. Here the ground motion with a 10% probability of exceedance in 50 years increases significantly, a result that is attributed to inclusion of a new, more realistic ground motion model for plate-boundary earthquakes in this unique tectonic setting.</div><div><br>This paper was presented to the 2023 Australian Earthquake Engineering Conference 23-25 November 2023 (https://aees.org.au/aees-conference-2023/)</div>

  • <div>Geoscience Australia, together with contributions from the wider Australian seismology community, have produced the 2023 National Seismic Hazard Assessment (NSHA23), intended for inclusion into the 2024 revision of Standards Australia’s Structural design actions, part 4: Earthquake actions in Australia, AS1170.4–2007 (Standards Australia, 2018). This Standard is prepared by sub-committee BD-006-11, General Design Requirements and Loading on Structures of Standards Australia. </div><div>This Geoscience Australia Record provides the technical overview for the development of the NSHA23. Time-independent, ground-motion values with the mean value of the target exceedance probability are calculated for the geometric mean of the horizontal peak ground acceleration (PGA) and spectral accelerations, <em>Sa</em> (<em>T</em>), for eleven oscillator periods <em>T</em>&nbsp;= 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.7, 1.0, 1.5, 2.0 and 3.0 s. Maps illustrating the spatial distribution of ground-motion hazard are calculated using a 12.5-km national grid spacing (over 100,000 sites). Hazard curves and uniform-hazard spectra are also calculated for key localities. Maps of PGA, in addition to <em>Sa </em>(0.2&nbsp;s) and <em>Sa </em>(1.0&nbsp;s) are presented for a 10% (Figure 1‑1) and 2% probability of exceedance in 50 years. These exceedance probabilities refer to 1/475 and 1/2475 annual exceedance probability (AEP), respectively. Ground-motion values with a given probability of exceedance in the investigation time are calculated for each grid point on a national scale, while uniform-hazard spectra (UHS) have been calculated specifically for AS1170.4 city localities and additional sites for two probability levels: 10%, and 2% probability of exceedance in 50 years. </div><div>The NSHA23 has used the 2018 National Seismic Hazard Assessment (NSHA18) as a foundation and has built upon the previous assessment through several key updates and revisions to model components. Whilst the NSHA23 was intended to be a modest update to the 2018 model, there was considerable effort placed into updating several model components, including: 1) updating and extending the earthquake catalogue (Allen<em> et al.</em>, in press); 2) updating the fault-source model (Clark, 2023; Allen<em> et al.</em>, 2024, in press); 3) the augmentation of the Australian Ground-Motion Database (Ghasemi and Allen, 2021, 2023) with new and legacy data for ground-motion model (GMM) evaluation and weighting; and 4) review and revision of the seismic-source and ground-motion characterisations model logic trees through expert elicitation. </div><div>For the first time, the NSHA23 calculates hazard considering different site classes, assuming varying time-averaged shear-wave velocities in the upper 30 m of the crust (i.e., <em>VS</em>30): 150, 270, 450, 760 and 1,100 m/s. It is important to note that many localities across Australia lie within sedimentary basins and sites may be subject to significant ground-motion amplification owing to basin resonance effects. Whilst the calculation of hazard for different site conditions is a significant advance, there is no explicit modelling of basin resonance effects. Consequently, users of the NSHA23 should use caution and ensure they are aware of any local site conditions that may modify the earthquake ground motions that have been calculated through this assessment. Further work is required to fully characterise the probabilistic seismic site response of major Australian urban centres that lie within deep sedimentary basins (e.g., Adelaide and Perth) where earthquake ground motions could be significantly modified by local geological structure. </div><div>Sensitivity tests demonstrate that there are minor changes in the mean PGA hazard (mostly decreases) relative to the NSHA18 due to the NSHA23 seismic-source characterisation model (SSCM). However, these decreases due to the SSCM are more than offset due to changes in the ground-motion characterisation model (GMCM), resulting in a net increase in hazard over the range of exceedance probabilities considered. The most significant changes in hazard occurred in the City of Darwin, Northern Territory. This change in hazard is almost exclusively due to the use of the new Allen (2022) GMM, which forecasts significantly higher short-period ground motions than the GMMs which contributed to the NSHA18 GMCM. Considering all localities, the mean (plus and minus one standard deviation) percentage increase for the NSHA23 relative to the NSHA18 for mean PGA at the 10% chance of exceedance in 50 years is 25.8% ± 33.5%.&nbsp;Whilst this may seem like a rather significant change, when the hazard difference is considered for the same probability level across all sites, the mean difference in PGA hazard is only 0.008 ± 0.011 g.</div>

  • The 2018 National Seismic Hazard Assessment (NSHA18) aims to provide the most up-to-date and comprehensive understanding of seismic hazard in Australia. As such, NSHA18 includes a range of alternative models for characterising seismic sources and ground motions proposed by members of the Australia earthquake hazard community. The final hazard assessment is a weighted combination of alternative models. This report describes the use of a structured expert elicitation methodology (the ‘Classical Model’) to weight the alternative models and presents the complete results of this process. Seismic hazard assessments are inherently uncertain due to the long return periods of damaging earthquakes relative to the time period of human observation. This is especially the case for low-seismicity regions such as Australia. Despite this uncertainty, there is a demand for estimates of seismic hazard to underpin a range of decision making aimed at reducing the impacts of earthquakes to society. In the face of uncertainty, experts will propose alternative models for the distribution of earthquake occurrence in space, time and magnitude (i.e. seismic source characterisation), and how ground shaking is propagated through the crust (i.e. ground motion characterisation). In most cases, there is insufficient data to independently and quantitatively determine a ‘best’ model. Therefore it is unreasonable to expect, or force, experts to agree on a single consensus model. Instead, seismic hazard assessments should capture the variability in expert opinion, while allowing that not all experts are equally adept. Logic trees, with branches representing mutually exclusive models weighted by expert opinion, can be used to model this uncertainty in seismic hazard assessment. The resulting hazard assessment thereby captures the range of plausible uncertainty given current knowledge of earthquake occurrence in Australia. For the NSHA18, experts were invited to contribute peer-reviewed seismic source models for consideration, resulting in 16 seismic source models being proposed. Each of these models requires values to be assigned to uncertain parameters such as the maximum magnitude earthquake expected. Similarly, up to 20 published ground motion models were identified as being appropriate for characterising ground motions for different tectonic regions in Australia. To weight these models, 17 experts in seismic hazard assessment, representative of the collective expertise of the Australian earthquake hazard community, were invited to two workshops held at Geoscience Australia in March 2017. At these workshops, the experts each assigned weights to alternative models representing their degree of belief that a particular model is the ‘true’ model. The experts were calibrated through a series of questions that tested their knowledge of the subject and ability to assess the limits to their knowledge. These workshops resulted in calibrated weights used to parameterise the final seismic source model and ground motion model logic trees for NSHA18. Through use of a structured expert elicitation methodology these weights have been determined in a transparent and reproducible manner drawing on the full depth of expertise and experience within the Australia earthquake hazard community. Such methodologies have application to a range of uncertain problems beyond the case of seismic hazard assessment presented here.